[1] Yüksek, S. (2019). Mechanical Properties of Some Building Stones from Volcanic Deposits of Mount Erciyes (Turkey). Mater.Construcc, 69 [334], e187
https://doi.org/10.3989/mc.2019.04618.
[2] Graue, B., Siegesmund, S., Oyhantcabal, P., Naumann, R., Licha, T., & Simon, K. (2013) The Effect of Air Pollution on Stone Decay: The Decay of the Drachenfels Trachyte in Industrial, Urban, and Rural Environments—a Case Study of the Cologne, Altenberg and Xanten Cathedrals. Environ Earth Sci, 69, 1095–1124.
[3] El-gohary, M. (2015) Inter Effective Roles of Some Deterioration Agents Affecting Edfu Royal Birth House "Mammisi". National Journal of Conservation Science, 6(3), 349-368.
[5] Hadi, A. & Ali, M. (2018) The Effect of Grain Size and Cement Content on Index Properties of Weakly Solidified Artificial Sandstones.Journal of Geophysics and Engineering, 15(2), 613–619.
[6] Cai, X. Zhou, Z., Liu, K., Du, X., & Zang, H. (2019) Water-Weakening Effects on the Mechanical Behavior of Different Rock Types: Phenomena and Mechanisms. Appl. Sci., 9 (20), 4450.
[7] Miscevic, P. & Vlastelica, G. (2014) Impact of Weathering on Slope Stability in Soft Rock Mass.Journal of Rock Mechanics and Geotechnical Engineering, 6, 240-250.
[8] Zhixue, S., Sun Zhilei, S., Hongjiang, L., & Xijie, Y. (2010) Characteristics of Carbonate Cements in Sandstone Reservoirs: a Case From Yanchang Formation, Middle and Southern Ordos Basin, China. PETROL. EXPLOR.DEVELOP., 37(5), 543–551.
[9] Molina, E., Benavente, D., Sebastian, E., & Cultrone, G. (2015). The Influence of Rock Fabric in the Durability of Two Sandstones Used in the Andalusian Architectural Heritage (Montoro and Ronda, Spain). Engineering Geology, 197, 67–81.
[10]
Brutin, D. &
Starov, V. (2018) Recent Advances in Droplet Wetting and Evaporation.
Chem. Soc. Rev., 47, 558-585.
[11] Camuffo, D. (1995) Physical weathering of stones,. The Science of the Total Environment,167, 1-14.
[12] Lis-Śledziona, A., (2019) Petrophysical Rock Typing and Permeability Prediction in Tight Sandstone Reservoir.
ActaGeophysica, 67(6),1895–1911.
[13] Lawrence. M. Anovitz, D. & Cole, R. () Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80 (1), 61–164.
[15] Rosales, I. & Pérez-García, A. () Porosity Development, Diagenesis and Basin Modelling of a Lower Cretaceous (Albian) Carbonate Platform from Northern Spain. Geological Society, 329, 317-342.
[16] De Muynck, W., Leuridan S., Van Loo D., Verbeken K., Cnudde V., De Belie N., & Verstraete W. (2011) Influence of Pore Structure on the Effectiveness of a Biogenic Carbonate Surface Treatment for Limestone Conservation. Appl Environ Microbiol, 77(19), 6808–6820.
[17] Piacenti F., Carbonell, R., Camaiti, M., Henon, F., & Luppichini, E. (1995) Protective Materials for Stone - Effects on Stone Permeability and Gas Transport. Methods of Evaluating Products for the Conservation of Porous Building Materials in Monuments International Colloquium Rome, 19-21.
[18] Desarnaud, J., Derluyn, H., Molari, L., De Miranda, S., Cnudde, V., & Shahidzadeh, N. (2015) Drying of Salt Contaminated Porous Media: Effect of Primary and Secondary Nucleation. Journal of Applied Physics, 118(11), [114901].
[19] Ppes, M. and R. Keanini (2017) Mechanical Weathering and Rock Erosion by Climate-dependent Subcritical Cracking. Rev. Geophys., 55,470–508.
[20] Chigira, M. & Sone, K. (1991). Chemical Weathering Mechanisms and Their Effects on Engineering Properties of Soft Sandstone and Conglomerate Cemented by Zeolite in a Mountainous Area. Engineering Geology, 30(2), 195-219.
[21] Ogburn, D. & Sierra, J. (2013) Evaluating Effects of Chemical Weathering and Surface Contamination on the in-Situ Provenance Analysis of Building Stones in the Cuzco Region of Peru With Portable Xrf. Journal of Archaeological Science, 40(4), 1823-1837.
[22] Labus, M., et al. (2012) Sandstone Degradation: An Experimental Study of Accelerated Weathering. Environ Earth Sci, 67, 2027–2042.
[23] Marszałek, M., Alexandrowicz, Z., & Rzepa, G. (2014). Composition of Weathering Crusts on Sandstones from Natural Outcrops and Architectonic Elements in an Urban Environment. Environ Scipollut Res Int., 21, 14023–14036.
[24] Ruedrich, J., Kirchner, D., & Siegesmund, S. (2011). Physical Weathering of Building Stones Induced by Freeze–thaw Action: A Laboratory Long-term Study. Environmental Earth Sciences, 63(7–8), 1573–1586.
[25] Eppes, M. & Keanini, R. (2017) Mechanical Weathering and Rock Erosion by Climate-dependent Subcritical Cracking. Rev. Geophys., 55, Doi:10.1002/2017rg000557.
[26] Lamp, J., Marchant, D., Mackay S., & Head J. (2016) Thermal Stress Weathering and the Spalling of Antarctic Rocks. Journal of Geophysical Research: Earth Surface, 122(1), 3-24.
[27] Zhao, C., Zhang, Y., Wang, Cc. Hou M., Li A., (2019) Recent Progress in Instrumental Techniques for Architectural Heritage Materials, Heritsci, 7, 36.
[28] Srodon, J., Drits, V., Mccarty, D., Hsieh, J., & Eberl, D. (2011) Quantitative X-ray Diffraction Analysis of Clay-bearing Rocks from Random Preparations. Clay and Cay Minerals, 49(6), 514-528.
[29] Scimeca M., Bischetti S., Lamsira H., Bonfiglio R., and Bonanno E. (2018) Energy Dispersive X-ray (Edx) Microanalysis: a Powerful Tool in Biomedical Research and Diagnosis. Eur J Histochem, 22, 62(1), 2841. Doi: 10.4081/ejh.2018.2841
[30] She F., Tung K., & Kong L. (2017) Calculation of Effective Pore Diameters in Porous Filtration Membranes with Image Analysis. Robotics and Computer-integrated Manufacturing 24 (3), 427- 434.
[31] Sato, M., Hattanji, T. A. (2018). Laboratory Experiment on Salt Weathering by Humidity Change: Salt Damage Induced by Deliquescence and Hydration. Prog Earth Planet Sci, 5, 84. Https://doi.org/10.1186/s40645-018-0241-2
[32] Hughes, J., &howind, T. (Eds.) (2016). Science and Art: a Future for Stone: Proceedings of the 13thinternational Congress on the Deterioration and Conservation of Stone, Volume 1. Paisley: University of the West of Scotland.
[33] Qian, T., Li, J. & Deng, Y. (2016) Pore Structure Modified Diatomite-supported Peg Composites for Thermal Energy Storage. Sci Rep, 6, 32392.https://doi.org/10.1038/srep32392.
[34] Schmid, K. S., Gross, J. and Helmig, R. (2014). Chemical Osmosis in Two-phaseflow and Salinity-dependent Capillary pressures in Rocks with Microporosity, waterresour. Res.,50, 763–789.
[35] Møller, E. B. (2004) Hydrothermal Performance and Soiling of Exterior Building Surfaces. kgs. Lyngby, Denmark: Technical University of Denmark. Byg Rapport, No. R-068
[36] Wood, M. (2016) Energy Transfer and Localization in Molecular Crystals. Open Access Dissertations. 728. Https://docs.lib.purdue.edu/open_access_dissertations/728
[37] Ma, Y., Huang, H., Hao, S. et Al. (2019) Insights into the Water Status in Hydrous Minerals Using Terahertz Time-domain Spectroscopy. Sci Rep, 9, 9265. Https://doi.org/10.1038/s41598-019-45739-2
[38] Rzhevsky, V. And Novik, G. (1971) the Physics of Rocks. Mir Publishers, Moscow, P.132.
[39] Aurang, Z., Firdous, T., & Asgharimaqsood, A. (2010) Thermo physical Properties of Dunite Rocks as a Function of Temperature Along with the Prediction of Effective Thermal Conductivity. Natural Science, 2(6).
[40] Rzhevsky, V. and Novik, G. (1971) The Physics of Rocks. Mir Publishers, Moscow, P.132.
[41] Anders, M., Laubach, S., & Scholz, C. (2014) Microfractures: A Review. Journal of Structural Geology, 69, 377-394.
[42] Freund F., & Takeuchi, A. Electric Currents Streaming Out of Stressed Igneous Rocks—a Step Towards Understanding Pre-Earthquake Low Frequency Em Emission. Physics and Chemistry of the Earth Parts a/b/c 31(4-9), 389-396,
[43] Kahraman S. () Evaluation of Simple Methods for Assessing the Uniaxial Compressive Strength of Rock. International Journal of Rock Mechanics and Mining Sciences, 38(7), 981-994.
[44] , Abdelaali, R., Abderrahim, B., Mohamed, B., Yves, G., Abderrahim, S., Mimoun, H. & Jamal S. (2013) Prediction of Porosity and Density of Calcarenite Rocks From P-wave Velocity Measurements. International Journal of Geosciences 4(9), 1292-1299.
[45] Bogusz, A. & Bukowska, M. (2015) Stress-strain Characteristics as a Source of Information on the Destruction of Rocks Under the Influence of Load. Journal of Sustainable Mining, 14(1), 46-54.
[46] Guéguen Y. & Kachanov M. (2011) Effective Elastic Properties of Cracked Rocks — an Overview. In: Leroy Y.m., Lehner F.k. (Eds) Mechanics of Crustal Rocks. Cism Courses and Lectures, Vol 533.Springer, Vien.
[47] Murrell S. (1965) the Effect of Triaxial Stress Systems on the Strength of Rocks at Atmospheric Temperatures, Geophysical Journal International, 10 (3), 231–281, Https://doi.org/10.1111/j.1365-246x.1965.tb03155.x
[48] Adhikaryd, M., Lemiale, V., & Poulsen, B. (2016) Recent Advances in the Stability Assessment of Natural and Engineered Rock Slopes. Journal of Nepal Geological Society, 50(1), 65-72. Https://doi.org/10.3126/jngs.v50i1.22866
[49] Hartlieb, P., Toifl, M., Kuchar, F., Meisels, R., & Antretter, T. (2016) Thermo-physical Properties of Selected Hard Rocks and Their Relation to Microwave-assisted Comminution. Minerals Engineering, 91, 15, 34-41.
[50] Hadi N., Freund M., & Freund F. (2012) Electrical Conductivity of Rocks and Dominant Charge Carriers: The Paradox of Thermally Activated Positive Holes. J Earth Sci Climate Change, 3, 128. Doi: 10.4172/2157-7617.1000128
[51] Freund, F. & Takeuchi, A. & Lau, B. (2006) Electric Currents Streaming Out of Stressed Igneous Rocks—a Step Towards Understanding Pre-earthquake Low Frequency Em Emission. Physics and Chemistry of the Earth, Parts a/b/c. 31.389-396. 10.1016/j.pce.2006.02.027.
[52] Rzhevsky V., and Novik. G. (1971) Translated From the Russian by a. K. Chatterjee a.,. Translation Edited by a. A. Beknazarov a., the Physics of Rocks, Rev. Ed,, Moscow : Mir Publishers.
[53] Funke K. (2013) Solid State Ionics: From Michael Faraday to Green Energy—the European Dimension. Scitechnoladv Mater., 14(4): 043502. Doi: 10.1088/1468-6996/14/4/043502
[54] Curtis, C.d. (1977) Sedimentary Geochemistry: Environments and Processes Dominated by Involvement of an Aqueous Phase. Philosophical Transactions of Theroyal Society, London, 286, 353–372.
[55] Burley, S., Kantorowicz, J. & Waugh, B. (1985) Clastic diagenesis. In: Sedimentology: Recent Andapplied Aspects (Eds P. Brenchley& B.p.b. Williams). Spec. Publ. Geol. Soc. London, No. 18, 189–226. Blackwell Scientific Publications, Oxford.
[56] Hawkins, A. & Mcconnell, B. (1992) Sensitivity of Sandstone Strength and Deformability to Changes in Moisture Content. Q. J. Eng. Geol. Hydrogeol., 25, 115–130.
[57] Wong, L., Maruvanchery, V., & Liu, G. (2016) Water Effects on Rock Strength and Staidness Degradation. actageotech, 11, 713–737.
[58] Iverson, R. (2000) Landslide Triggering by Rain Infiltration. Water Resour. Res., 36, 1897–1910.
[59] Zhou, Z., Cai, X., Ma, D., Du, X., Chen, L., Wang, H., & Zang, H. (2019) Water Saturation Effects on Dynamic Fracture Behavior of Sandstone. Int. J. Rock Mech. Min. Sci., 114, 46–61.
[60] Török, Á. & Vásárhelyi, B. (2010) The Influence of Fabric and Water Content on Selected Rock Mechanical Parameters of Travertine, Examples from Hungary. Eng. Geol., 115, 237–245.
[61] Wasantha, P., Ranjith, P., Permata, G., & Bing, D. (2018) Damage Evolution and Deformation Behaviour of Dry and Saturated Sandstones: Insights Gleaned from Optical Measurements. Meas. J. Int. Meas. Confed., 130, 8–17.
[62] Wong, L., Maruvanchery, V., & Liu, G. (2016) Water Effects on Rock Strength and Sti_ness Degradation. actageotech, 11, 713–737.
[63] Miao, S., Cai, M., Guo, Q., Wang, P. & Liang, M. (2016) Damage Effects and Mechanisms in Granite Treated with Acidic Chemical Solutions. Int. J. Rock Mech. Min. Sci., 88, 77–86.
[64] Aydan, Ö. & Ulusay, R. (2013) Geomechanical Evaluation of Derinkuyu Antique Underground City and Its Implications in Geoengineering. Rock Mech. Rock Eng., 46, 731–754.
[65] Yilmaz, I. (2010) Influence of Water Content on the Strength and Deformability of Gypsum. Int. J. Rock Mech. Min. Sci., 47, 342–347.
[66] Zhou, Z., Cai, X., Cao, W., Li, X., & Xiong, C. (2016) Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes. Rock Mech. Rock Eng., 49, 3009–3025.
[67] Török, Á. & Vásárhelyi, B. (2010) The Influence of Fabric and Water Content on Selected Rock Mechanical Parameters of Travertine, Examples from Hungary. Eng. Geol., 115, 237–245.
[68] Rajabzadeh, M.a., Moosavinasab, Z., Rakhshandehroo, G. Effects of Rock Classes and Porosity on the Relation Between Uniaxial Compressive Strength and Some Rock Properties for Carbonate Rocks. Rock Mech. Rock Eng., 2012, 45, 113–122.
[69] Gholami, R. & Rasouli, V. (2014) Mechanical and Elastic Properties of Transversely Isotropic Slate. Rock Mech. Rock Eng., 47, 1763–1773.
[70] Hadizadeh, J. & Law, R. (1991) Water-weakening of Sandstone and Quartzite Deformed at Various Stress and Strain Rates. Int. J. Rock Mech. Min. Sci., 28, 431–439.
[71] Erguler, Z. & Ulusay, R. (2009) Water-induced Variations in Mechanical Properties of Clay-bearing Rocks. Int. J. Rock Mech. Min. Sci., 46, 355–370.
[72] Wong, L., Maruvanchery, V., & Liu, G. (2016) Water Effects on Rock Strength and Sti_ness Degradation.actageotech, 11, 713–737.
[73] Hashiba, K., Fukui, K., Kataoka, M., & Chu, S. (2018) Effect of Water on the Strength and Creep Lifetime of Andesite, Int. J. Rock Mech. Min. Sci., 108, 37–42.
[74] Zhang, Q. & Zhao, J. (2014) A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials. Rock Mech. Rock Eng., 47, 1411–1478.
[75] Zhou, Z., Cai, X., Zhao, Y., Chen, L., Xiong, C., & Li, X. (2016) Strength Characteristics of Dry and Saturated Rock at Different Strain Rates. Trans. Nonferrous Met. Soc. China, 26, 1919–1925.
[76] Hammond, M.l. & Ravitz, S. (1963) Influence of Environment on Brittle Fracture of Silica. J. Am. Ceram. Soc., 46, 329–332.
[77] Vutukuri, V. (1974) The Effect of Liquids on the Tensile Strength of Limestone. Int. J. Rock Mech. Min. Sci., 11, 27–29.
[78] Michalske, T., & Freiman, S. (1982) Molecular Interpretation of Stress Corrosion in Silica. Nature, 295, 511–512.
[79] Atkinson, B. & Meredith, P. (1981) Stress Corrosion Cracking of Quartz: A Note on the Influence of Chemical Environment. Tectonophysics, 77, T1–t11.
[80] Handin, J., Rex, V., Hager, J., Melvin, F., & Feather, J. (1963) Experimental Deformation of Sedimentary Rocks Under Confining Pressure: Pore Pressure Tests. Am. Assoc. Pet. Geol. Bull., 47, 717–755.
[81] Zhong, C., Zhang, Z., Ranjith, P.g., Lu, Y., & Choi, X. (2019) The Role of Pore Water Plays in Coal Under Uniaxial Cyclic Loading. Eng. Geol., 257, 105125.
[82] Homand, S. & Shao, J. (2000) Mechanical Behaviour of a Porous Chalk and Effect of Saturating Fluid. Mech., Cohesive-frictional Mater., 5, 583–606.
[83] Van Eeckhout, E. (1976) The Mechanisms of Strength Reduction Due to Moisture in Coal Mine Shales. Int. J. Rock Mech. Min. Sci. Geomech., 13, 61–67.
[84] Kang, J., Zhu, J., & Zhao, J. (2019) A Review of Mechanisms of Induced Earthquakes: From a View of Rock Mechanics. Geomech. Geophys. Geo-energy Geo-resour., 5, 171–196.
[85] Wong, L., Maruvanchery, V., & Liu, G. (2016) Water Effects on Rock Strength and Stiffness Degradation. Actageotech, 11, 713–737.
[86] Van Eeckhout, E. (1976) The Mechanisms of Strength Reduction Due to Moisture in Coal Mine Shales. Int. J. Roc Mech. Min. Sci. Geomech., 13, 61–67.
[87] Mcconnell, B. (1989) Factors Controlling Sandstone Strength and Deformability in Uniaxial Compression. Ph.D. Thesis, University of Bristol, Bristol, UK.
[88] Michalske, T.a., Freiman, S.w.a Molecular Interpretation of Stress Corrosion in Silica. Nature 1982, 295, 511–512.
[89] Atkinson, B. & Meredith, P. (1981) Stress Corrosion Cracking of Quartz: A Note on the Influence of Chemical Environment. Tectonophysics, 77, T1–t11.
[90] Zhou, Z., Cai, X., Ma, D., Cao, W., Chen, L., & Zhou, J. (2018) Effects of Water Content on Fracture and Mechanical Behavior of Sandstone with a Low Clay Mineral Content. Eng. Fract. Mech., 193, 47–65.
[91] Wasantha, P., Ranjith, P., Permata, G., & Bing, D. (2018) Damage Evolution and Deformation Behaviour of Dry and Saturated Sandstones: Insights Gleaned from Optical Measurements. Meas. J. Int. Meas. Confed., 130, 8–17.
[92] Ahamed, M., Perera, M. Matthai, S., Ranjith, P., & Dong-yin, L. (2019) Journal of Petroleum Science and Engineering Coal Composition and Structural Variation With Rank and Its Influence on the Coal-moisture Interactions Under Coal Seam Temperature Conditions—a Review Article. J. Pet. Sci. Eng., 180, 901–917.
[93] Zhou, Z., Cai, X., Ma, D., Chen, L.,wang, S., Tan, L. Dynamic Tensile Properties of Sandstone Subjected to Wetting and Drying Cycles. Constr. Build. Mater. 2018, 182, 215–232.
[94] Zhou, Z., Cai, X., Li, X., Cao, W., & Du, X. (2019) Dynamic Response and Energy Evolution of Sandstone Under Coupled Static—dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications. Rock Mech. Rock Eng., 1–27.
[95] Liu, X., Wu, L., Zhang, Y., Liang, Z., Yao, X., & Liang, P. (2019) Frequency Properties of Acoustic Emissions from the Dry and Saturated Rock. Environ. Earth Sci., 78, 67.
[96] Ahamed, M., Perera, M., Matthai, S., Ranjith, P., & Dong-yin, L. (2019) Journal of Petroleum Science and Engineering Coal Composition and Structural Variation With Rank and Its Influence on the Coal-moisture Interactions Under Coal Seam Temperature Conditions—a Review Article. J. Pet. Sci. Eng., 180, 901–917.
[97] Ciantia, M., Castellanza, R. & Di Prisco, C. (2014). Experimental Study on the Water-induced Weakening of Calcarenites. Rock Mech. Rock Eng., 48, 441–461.
[98] Ciantia, M.., Castellanza, R., Crosta, G., & Hueckel, T. (2015). Effects of Mineral Suspension and Dissolution On strength and Compressibility of Soft Carbonate Rocks. Eng. Geol., 184, 1–18.
[99] Mcconnell, B. (1989). Factors Controlling Sandstone Strength and Deformability in Uniaxial Compression. Ph.D. Thesis, University of Bristol, Bristol, UK.
[100] Nicolas, A., Fortin, J., Regnet, J., Dimanov, A., & Gúeguen, Y. (2016) Brittle and Semi-brittle Behaviours of a Carbonate Rock: Influence of Water and Temperature. Geophys. J. Int., 206, 438–456.
[101] Duda, M. & Renner, J. (2013). The Weakening Effect of Water on the Brittle Failure Strength of Sandstone. Geophys. J. Int., 192, 1091–1108.
[102] Gerasimov Y. (1974) Physical Chemistry, Translated from the Russian, Tr, Mir, 72
[103] Gerasimov, Y. (1974) Physical Chemistry, Translated from the Russian, Tr, Mir, 157.