The Negative Role of some Internal and External Factors (Pores, Heat, Pressure, and Internal Grains) in the Deterioration of Sandstone Building: An Applied Study on the Lower Walls of the Luxor Temple

نوع المستند : المقالة الأصلية

المؤلف

Conservation department, Faculty of Archaeology, South Valley Univ., Qena, Egypt, 83523

المستخلص

Stone buildings suffer many problems that affect their durability and strength. Sandstone is one of the most archaeological stones that are affected by various deterioration factors. Sandstone deterioration and the physical properties that play an important role in this deterioration, such as porosity, humidity, and drought were examined. Moreover, sandstone properties were studied using X-ray diffraction, x-ray fluorescence, and scanning electron microscopy. The thermodynamics, strength, and elastic properties of rocks were investigated. The electrodynamics of sandstone was also studied to identify the extent of damage to the sandstone structure. The study also concluded that water has a mechanical effect Dangerous for sandstone.

الكلمات الرئيسية

الموضوعات الرئيسية


[1]   Yüksek, S. (2019). Mechanical Properties of Some Building Stones from Volcanic Deposits of Mount Erciyes (Turkey). Mater.Construcc, 69 [334], e187 https://doi.org/10.3989/mc.2019.04618.
[2]   Graue, B., Siegesmund, S., Oyhantcabal, P., Naumann, R., Licha, T., & Simon, K. (2013) The Effect of Air Pollution on Stone Decay: The Decay of the Drachenfels Trachyte in Industrial, Urban, and Rural Environments—a Case Study of the Cologne, Altenberg and Xanten Cathedrals. Environ Earth Sci, 69, 1095–1124.
[3]   El-gohary, M. (2015) Inter Effective Roles of Some Deterioration Agents Affecting Edfu Royal Birth House "Mammisi". National Journal of Conservation Science, 6(3), 349-368.
[4]   Labus, M. &Bochen, J. (2012) Environ Earth Sci, 67, 2027. https://doi.org/10.1007/s12665-012-1642-y
[5]   Hadi, A. & Ali, M. (2018) The Effect of Grain Size and Cement Content on Index Properties of Weakly Solidified Artificial Sandstones.Journal of Geophysics and Engineering, 15(2), 613–619.
[6]   Cai, X. Zhou, Z., Liu, K., Du, X., & Zang, H. (2019) Water-Weakening Effects on the Mechanical Behavior of Different Rock Types: Phenomena and Mechanisms. Appl. Sci., 9 (20), 4450.
[7]   Miscevic, P. & Vlastelica, G. (2014) Impact of Weathering on Slope Stability in Soft Rock Mass.Journal of Rock Mechanics and Geotechnical Engineering, 6, 240-250.
[8]   Zhixue, S., Sun Zhilei, S., Hongjiang, L., & Xijie, Y. (2010) Characteristics of Carbonate Cements in Sandstone Reservoirs: a Case From Yanchang Formation, Middle and Southern Ordos Basin, China. PETROL. EXPLOR.DEVELOP., 37(5), 543–551.
[9]   Molina, E., Benavente, D., Sebastian, E., & Cultrone, G. (2015). The Influence of Rock Fabric in the Durability of Two Sandstones Used in the Andalusian Architectural Heritage (Montoro and Ronda, Spain). Engineering Geology, 197, 67–81.
[10]                       Brutin, D. & Starov, V. (2018) Recent Advances in Droplet Wetting and Evaporation. Chem. Soc. Rev., 47, 558-585.
[11]                       Camuffo, D. (1995) Physical weathering of stones,.  The Science of the Total Environment,167, 1-14.
[12]                       Lis-Śledziona, A., (2019) Petrophysical Rock Typing and Permeability Prediction in Tight Sandstone Reservoir. ActaGeophysica, 67(6),1895–1911.
[13]                       Lawrence. M. Anovitz, D. & Cole, R. () Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80 (1), 61–164. 
[14]                       Karaca, Z. (2010).  Water Absorption and Dehydration of Natural Stones Versus Time. Construction and Building Materials, 24(5),786-790.
[15]                       Rosales, I. & Pérez-García, A. () Porosity Development, Diagenesis and Basin Modelling of a Lower Cretaceous (Albian) Carbonate Platform from Northern Spain. Geological Society, 329, 317-342.
[16]                       De Muynck, W., Leuridan S., Van Loo D., Verbeken K., Cnudde V., De Belie N., & Verstraete W. (2011) Influence of Pore Structure on the Effectiveness of a Biogenic Carbonate Surface Treatment for Limestone Conservation. Appl Environ Microbiol, 77(19), 6808–6820.
[17]                       Piacenti F., Carbonell, R., Camaiti, M., Henon, F., & Luppichini, E. (1995) Protective Materials for Stone - Effects on Stone Permeability and Gas Transport. Methods of Evaluating Products for the Conservation of Porous Building Materials in Monuments International Colloquium Rome, 19-21.
[18]                       Desarnaud, J., Derluyn, H., Molari, L., De Miranda, S., Cnudde, V., & Shahidzadeh, N. (2015) Drying of Salt Contaminated Porous Media: Effect of Primary and Secondary Nucleation. Journal of Applied Physics, 118(11), [114901].
[19]                       Ppes, M. and R. Keanini (2017) Mechanical Weathering and Rock Erosion by Climate-dependent Subcritical Cracking. Rev. Geophys., 55,470–508.
[20]                       Chigira, M. & Sone, K. (1991). Chemical Weathering Mechanisms and Their Effects on Engineering Properties of Soft Sandstone and Conglomerate Cemented by Zeolite in a Mountainous Area. Engineering Geology, 30(2), 195-219.
[21]                       Ogburn, D. & Sierra, J. (2013) Evaluating Effects of Chemical Weathering and Surface Contamination on the in-Situ Provenance Analysis of Building Stones in the Cuzco Region of Peru With Portable Xrf. Journal of Archaeological Science, 40(4), 1823-1837.
[22]                       Labus, M., et al. (2012) Sandstone Degradation: An Experimental Study of Accelerated Weathering. Environ Earth Sci, 67, 2027–2042.
[23]                       Marszałek, M., Alexandrowicz, Z., & Rzepa, G. (2014). Composition of Weathering Crusts on Sandstones from Natural Outcrops and Architectonic Elements in an Urban Environment. Environ Scipollut Res Int., 21, 14023–14036.
[24]                       Ruedrich, J., Kirchner, D., & Siegesmund, S. (2011). Physical Weathering of Building Stones Induced by Freeze–thaw Action: A Laboratory Long-term Study. Environmental Earth Sciences, 63(7–8), 1573–1586.
[25]                       Eppes, M. & Keanini, R. (2017) Mechanical Weathering and Rock Erosion by Climate-dependent Subcritical Cracking. Rev. Geophys., 55, Doi:10.1002/2017rg000557.
[26]                       Lamp, J., Marchant, D., Mackay S., & Head J. (2016) Thermal Stress Weathering and the Spalling of Antarctic Rocks. Journal of Geophysical Research: Earth Surface, 122(1), 3-24.
[27]                       Zhao, C., Zhang, Y., Wang, Cc. Hou M., Li A., (2019) Recent Progress in Instrumental Techniques for Architectural Heritage Materials, Heritsci, 7, 36.
[28]                       Srodon, J., Drits, V., Mccarty, D., Hsieh, J., & Eberl, D. (2011) Quantitative X-ray Diffraction Analysis of Clay-bearing Rocks from Random Preparations. Clay and Cay Minerals, 49(6), 514-528.
[29]                       Scimeca M., Bischetti S., Lamsira H.,  Bonfiglio R.,  and  Bonanno E. (2018) Energy Dispersive X-ray (Edx) Microanalysis: a Powerful Tool in Biomedical Research and Diagnosis. Eur J Histochem, 22, 62(1), 2841.   Doi: 10.4081/ejh.2018.2841
[30]                       She F., Tung K., & Kong L. (2017) Calculation of Effective Pore Diameters in Porous Filtration Membranes with Image Analysis. Robotics and Computer-integrated Manufacturing 24 (3), 427- 434.
[31]                       Sato, M., Hattanji, T. A. (2018). Laboratory Experiment on Salt Weathering by Humidity Change: Salt Damage Induced by Deliquescence and Hydration. Prog Earth Planet Sci, 5, 84. Https://doi.org/10.1186/s40645-018-0241-2
[32]                       Hughes, J., &howind, T. (Eds.) (2016). Science and Art: a Future for Stone: Proceedings of the 13thinternational Congress on the Deterioration and Conservation of Stone, Volume 1. Paisley: University of the West of Scotland.
[33]                       Qian, T., Li, J. & Deng, Y. (2016) Pore Structure Modified Diatomite-supported Peg Composites for Thermal Energy Storage. Sci Rep, 6, 32392.https://doi.org/10.1038/srep32392.
[34]                       Schmid, K. S., Gross, J. and Helmig, R. (2014). Chemical Osmosis in Two-phaseflow and Salinity-dependent Capillary pressures in Rocks with Microporosity, waterresour. Res.,50, 763–789.
[35]                       Møller, E. B. (2004) Hydrothermal Performance and Soiling of Exterior Building Surfaces. kgs. Lyngby, Denmark: Technical University of Denmark. Byg Rapport, No. R-068
[36]                       Wood, M. (2016) Energy Transfer and Localization in Molecular Crystals. Open Access Dissertations. 728. Https://docs.lib.purdue.edu/open_access_dissertations/728
[37]                       Ma, Y., Huang, H., Hao, S. et Al. (2019) Insights into the Water Status in Hydrous Minerals Using Terahertz Time-domain Spectroscopy. Sci Rep, 9, 9265. Https://doi.org/10.1038/s41598-019-45739-2
[38]                       Rzhevsky, V. And Novik, G. (1971) the Physics of Rocks. Mir Publishers, Moscow, P.132.
[39]                       Aurang, Z., Firdous, T., & Asgharimaqsood, A. (2010) Thermo physical Properties of Dunite Rocks as a Function of Temperature Along with the Prediction of Effective Thermal Conductivity. Natural Science, 2(6).
[40]                       Rzhevsky, V. and Novik, G. (1971) The Physics of Rocks. Mir Publishers, Moscow, P.132.
[41]                       Anders, M., Laubach, S., & Scholz, C. (2014) Microfractures:  A Review. Journal of Structural Geology, 69, 377-394.
[42]                       Freund F., & Takeuchi, A. Electric Currents Streaming Out of Stressed Igneous Rocks—a Step Towards Understanding Pre-Earthquake Low Frequency Em Emission. Physics and Chemistry of the Earth Parts a/b/c 31(4-9), 389-396,
[43]                       Kahraman S. () Evaluation of Simple Methods for Assessing the Uniaxial Compressive Strength of Rock. International Journal of Rock Mechanics and Mining Sciences, 38(7), 981-994.
[44]                       , Abdelaali, R., Abderrahim, B., Mohamed, B., Yves, G., Abderrahim, S., Mimoun, H. & Jamal S. (2013) Prediction of Porosity and Density of Calcarenite Rocks From P-wave Velocity Measurements. International Journal of Geosciences 4(9), 1292-1299.
[45]                       Bogusz, A. & Bukowska, M. (2015) Stress-strain Characteristics as a Source of Information on the Destruction of Rocks Under the Influence of Load. Journal of Sustainable Mining, 14(1), 46-54.
[46]                       Guéguen Y. & Kachanov M. (2011) Effective Elastic Properties of Cracked Rocks — an Overview. In: Leroy Y.m., Lehner F.k. (Eds) Mechanics of Crustal Rocks. Cism Courses and Lectures, Vol 533.Springer, Vien.
[47]                       Murrell S. (1965) the Effect of Triaxial Stress Systems on the Strength of Rocks at Atmospheric Temperatures, Geophysical Journal International, 10 (3), 231–281, Https://doi.org/10.1111/j.1365-246x.1965.tb03155.x
[48]                       Adhikaryd, M., Lemiale, V., & Poulsen, B. (2016) Recent Advances in the Stability Assessment of Natural and Engineered Rock Slopes. Journal of Nepal Geological Society, 50(1), 65-72. Https://doi.org/10.3126/jngs.v50i1.22866
[49]                       Hartlieb, P., Toifl, M., Kuchar, F., Meisels, R., & Antretter, T. (2016) Thermo-physical Properties of Selected Hard Rocks and Their Relation to Microwave-assisted Comminution. Minerals Engineering, 91, 15, 34-41.
[50]                       Hadi N., Freund M., & Freund F. (2012) Electrical Conductivity of Rocks and Dominant Charge Carriers: The Paradox of Thermally Activated Positive Holes. J Earth Sci Climate Change, 3, 128. Doi: 10.4172/2157-7617.1000128
[51]                       Freund, F. & Takeuchi, A. & Lau, B. (2006) Electric Currents Streaming Out of Stressed Igneous Rocks—a Step Towards Understanding Pre-earthquake Low Frequency Em Emission. Physics and Chemistry of the Earth, Parts a/b/c. 31.389-396. 10.1016/j.pce.2006.02.027.
[52]                       Rzhevsky V., and Novik. G. (1971) Translated From the Russian by a. K. Chatterjee a.,. Translation Edited by a. A. Beknazarov a., the Physics of Rocks, Rev. Ed,, Moscow : Mir Publishers.
[53]                       Funke K. (2013) Solid State Ionics: From Michael Faraday to Green Energy—the European Dimension. Scitechnoladv Mater., 14(4): 043502. Doi: 10.1088/1468-6996/14/4/043502
[54]                       Curtis, C.d. (1977) Sedimentary Geochemistry: Environments and Processes Dominated by Involvement of an Aqueous Phase. Philosophical Transactions of Theroyal Society, London, 286, 353–372.
[55]                       Burley, S., Kantorowicz, J. & Waugh, B. (1985) Clastic diagenesis. In: Sedimentology: Recent Andapplied Aspects (Eds P. Brenchley& B.p.b. Williams). Spec. Publ. Geol. Soc. London, No. 18, 189–226. Blackwell Scientific Publications, Oxford.
[56]                       Hawkins, A. & Mcconnell, B. (1992) Sensitivity of Sandstone Strength and Deformability to Changes in Moisture Content. Q. J. Eng. Geol. Hydrogeol., 25, 115–130.
[57]                       Wong, L., Maruvanchery, V., & Liu, G. (2016) Water Effects on Rock Strength and Staidness Degradation. actageotech, 11, 713–737.
[58]                       Iverson, R. (2000) Landslide Triggering by Rain Infiltration. Water Resour. Res., 36, 1897–1910.
[59]                       Zhou, Z., Cai, X., Ma, D., Du, X., Chen, L., Wang, H., & Zang, H. (2019) Water Saturation Effects on Dynamic Fracture Behavior of Sandstone. Int. J. Rock Mech. Min. Sci., 114, 46–61.
[60]                       Török, Á. & Vásárhelyi, B. (2010) The Influence of Fabric and Water Content on Selected Rock Mechanical Parameters of Travertine, Examples from Hungary. Eng. Geol., 115, 237–245.
[61]                       Wasantha, P., Ranjith, P., Permata, G., & Bing, D. (2018) Damage Evolution and Deformation Behaviour of Dry and Saturated Sandstones: Insights Gleaned from Optical Measurements. Meas. J. Int. Meas. Confed., 130, 8–17.
[62]                       Wong, L., Maruvanchery, V., & Liu, G. (2016) Water Effects on Rock Strength and Sti_ness Degradation. actageotech, 11, 713–737.
[63]                       Miao, S., Cai, M., Guo, Q., Wang, P. & Liang, M. (2016) Damage Effects and Mechanisms in Granite Treated with Acidic Chemical Solutions. Int. J. Rock Mech. Min. Sci., 88, 77–86.
[64]                       Aydan, Ö. & Ulusay, R. (2013) Geomechanical Evaluation of Derinkuyu Antique Underground City and Its Implications in Geoengineering. Rock Mech. Rock Eng., 46, 731–754.
[65]                       Yilmaz, I. (2010) Influence of Water Content on the Strength and Deformability of Gypsum. Int. J. Rock Mech. Min. Sci., 47, 342–347.
[66]                       Zhou, Z., Cai, X., Cao, W., Li, X., & Xiong, C. (2016) Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes. Rock Mech. Rock Eng., 49, 3009–3025.
[67]                       Török, Á. & Vásárhelyi, B. (2010) The Influence of Fabric and Water Content on Selected Rock Mechanical Parameters of Travertine, Examples from Hungary. Eng. Geol., 115, 237–245.
[68]                       Rajabzadeh, M.a., Moosavinasab, Z., Rakhshandehroo, G. Effects of Rock Classes and Porosity on the Relation Between Uniaxial Compressive Strength and Some Rock Properties for Carbonate Rocks. Rock Mech. Rock Eng., 2012, 45, 113–122.
[69]                       Gholami, R. & Rasouli, V. (2014) Mechanical and Elastic Properties of Transversely Isotropic Slate. Rock Mech. Rock Eng., 47, 1763–1773.
[70]                       Hadizadeh, J. & Law, R. (1991) Water-weakening of Sandstone and Quartzite Deformed at Various Stress and Strain Rates. Int. J. Rock Mech. Min. Sci., 28, 431–439.
[71]                       Erguler, Z. & Ulusay, R. (2009) Water-induced Variations in Mechanical Properties of Clay-bearing Rocks. Int. J. Rock Mech. Min. Sci., 46, 355–370.
[72]                       Wong, L., Maruvanchery, V., & Liu, G. (2016) Water Effects on Rock Strength and Sti_ness Degradation.actageotech, 11, 713–737.
[73]                       Hashiba, K., Fukui, K., Kataoka, M., & Chu, S. (2018) Effect of Water on the Strength and Creep Lifetime of Andesite, Int. J. Rock Mech. Min. Sci., 108, 37–42.
[74]                       Zhang, Q. & Zhao, J. (2014) A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials. Rock Mech. Rock Eng., 47, 1411–1478.
[75]                       Zhou, Z., Cai, X., Zhao, Y., Chen, L., Xiong, C., & Li, X. (2016) Strength Characteristics of Dry and Saturated Rock at Different Strain Rates. Trans. Nonferrous Met. Soc. China, 26, 1919–1925.
[76]                       Hammond, M.l. & Ravitz, S. (1963) Influence of Environment on Brittle Fracture of Silica. J. Am. Ceram. Soc., 46, 329–332.
[77]                       Vutukuri, V. (1974) The Effect of Liquids on the Tensile Strength of Limestone. Int. J. Rock Mech. Min. Sci., 11, 27–29.
[78]                       Michalske, T., & Freiman, S. (1982) Molecular Interpretation of Stress Corrosion in Silica. Nature, 295, 511–512.
[79]                       Atkinson, B. & Meredith, P. (1981) Stress Corrosion Cracking of Quartz: A Note on the Influence of Chemical Environment. Tectonophysics, 77, T1–t11.
[80]                       Handin, J., Rex, V., Hager, J., Melvin, F., & Feather, J. (1963) Experimental Deformation of Sedimentary Rocks Under Confining Pressure: Pore Pressure Tests. Am. Assoc. Pet. Geol. Bull., 47, 717–755.
[81]                       Zhong, C., Zhang, Z., Ranjith, P.g., Lu, Y., & Choi, X. (2019) The Role of Pore Water Plays in Coal Under Uniaxial Cyclic Loading. Eng. Geol., 257, 105125.
[82]                       Homand, S. & Shao, J. (2000) Mechanical Behaviour of a Porous Chalk and Effect of Saturating Fluid. Mech., Cohesive-frictional Mater., 5, 583–606.
[83]                       Van Eeckhout, E. (1976) The Mechanisms of Strength Reduction Due to Moisture in Coal Mine Shales. Int. J. Rock Mech. Min. Sci. Geomech., 13, 61–67.
[84]                       Kang, J., Zhu, J., & Zhao, J. (2019) A Review of Mechanisms of Induced Earthquakes: From a View of Rock Mechanics. Geomech. Geophys. Geo-energy Geo-resour., 5, 171–196.
[85]                       Wong, L., Maruvanchery, V., & Liu, G. (2016) Water Effects on Rock Strength and Stiffness Degradation. Actageotech, 11, 713–737.
[86]                       Van Eeckhout, E. (1976) The Mechanisms of Strength Reduction Due to Moisture in Coal Mine Shales. Int. J. Roc Mech. Min. Sci. Geomech., 13, 61–67.
[87]                       Mcconnell, B. (1989) Factors Controlling Sandstone Strength and Deformability in Uniaxial Compression. Ph.D. Thesis, University of Bristol, Bristol, UK.
[88]                       Michalske, T.a., Freiman, S.w.a Molecular Interpretation of Stress Corrosion in Silica. Nature 1982, 295, 511–512.
[89]                       Atkinson, B. & Meredith, P. (1981) Stress Corrosion Cracking of Quartz: A Note on the Influence of Chemical Environment. Tectonophysics, 77, T1–t11.
[90]                       Zhou, Z., Cai, X., Ma, D., Cao, W., Chen, L., & Zhou, J. (2018) Effects of Water Content on Fracture and Mechanical Behavior of Sandstone with a Low Clay Mineral Content. Eng. Fract. Mech., 193, 47–65.
[91]                       Wasantha, P., Ranjith, P., Permata, G., & Bing, D. (2018) Damage Evolution and Deformation Behaviour of Dry and Saturated Sandstones: Insights Gleaned from Optical Measurements. Meas. J. Int. Meas. Confed., 130, 8–17.
[92]                       Ahamed, M., Perera, M. Matthai, S., Ranjith, P., & Dong-yin, L. (2019) Journal of Petroleum Science and Engineering Coal Composition and Structural Variation With Rank and Its Influence on the Coal-moisture Interactions Under Coal Seam Temperature Conditions—a Review Article. J. Pet. Sci. Eng., 180, 901–917.
[93]                       Zhou, Z., Cai, X., Ma, D., Chen, L.,wang, S., Tan, L. Dynamic Tensile Properties of Sandstone Subjected to Wetting and Drying Cycles. Constr. Build. Mater. 2018, 182, 215–232.
[94]                       Zhou, Z., Cai, X., Li, X., Cao, W., & Du, X. (2019) Dynamic Response and Energy Evolution of Sandstone Under Coupled Static—dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications. Rock Mech. Rock Eng., 1–27.
[95]                       Liu, X., Wu, L., Zhang, Y., Liang, Z., Yao, X., & Liang, P. (2019) Frequency Properties of Acoustic Emissions from the Dry and Saturated Rock. Environ. Earth Sci., 78, 67.
[96]                       Ahamed, M., Perera, M., Matthai, S., Ranjith, P., & Dong-yin, L. (2019) Journal of Petroleum Science and Engineering Coal Composition and Structural Variation With Rank and Its Influence on the Coal-moisture Interactions Under Coal Seam Temperature Conditions—a Review Article. J. Pet. Sci. Eng., 180, 901–917.
[97]                       Ciantia, M., Castellanza, R. & Di Prisco, C. (2014). Experimental Study on the Water-induced Weakening of Calcarenites. Rock Mech. Rock Eng., 48, 441–461.
[98]                       Ciantia, M.., Castellanza, R., Crosta, G., & Hueckel, T. (2015). Effects of Mineral Suspension and Dissolution On strength and Compressibility of Soft Carbonate Rocks. Eng. Geol., 184, 1–18.
[99]                       Mcconnell, B. (1989). Factors Controlling Sandstone Strength and Deformability in Uniaxial Compression. Ph.D. Thesis, University of Bristol, Bristol, UK.
[100]                   Nicolas, A., Fortin, J., Regnet, J., Dimanov, A., & Gúeguen, Y. (2016) Brittle and Semi-brittle Behaviours of a Carbonate Rock: Influence of Water and Temperature. Geophys. J. Int., 206, 438–456.
[101]                   Duda, M. & Renner, J. (2013). The Weakening Effect of Water on the Brittle Failure Strength of Sandstone. Geophys. J. Int., 192, 1091–1108.
[102]                   Gerasimov Y. (1974) Physical Chemistry, Translated from the Russian, Tr, Mir, 72
[103]                   Gerasimov, Y. (1974) Physical Chemistry, Translated from the Russian, Tr, Mir, 157.